
Journal of Management Practices, Humanities and Social Sciences

Vol 6 Issue 1 pp. 88-105

https://doi.org/10.33152/jmphss-6.1.9

ORIGINAL CONTRIBUTION

Code Comment Analysis–A Review Paper

Syed Zohaib Hassan1*, Ayesha Irshad2, Jamaluddin Mir3, Ayesha Aslam4, Kalsoom Ayaz5,

Muhammad Awais Bawazir6

1 School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
2, 4, 5 Department of Computer Science, Abbottabad University of Science & Technology, Abbottabad, Pakistan
3 Faculty of Computer Science & Information Technology, Universiti Tun Hossein Onn Malaysia,

Batu Pahat, Malaysia
6 Department of Computer Science, Bahria University, Islamabad, Pakistan

Abstract— The compilers are manufactured in such a way that they ignore most comments in software systems' source code. In ad-

dition to being a key source of system documentation, code comments are essential for both establishment and improvement. System

comments or just quantitative assertions regarding the quality of the program are presently the only known techniques for evaluating

software quality. In software development, comments are being used as a regular practice to enhance the clarity of code and to trans-

mit the enthusiasm of programmers in a more conveyed manner. Whereas programmers seldom bother to keep their comments current.

Comments are an important source of information about how the frameworkworks. Various disciplines have concentrated on the content

of the online client comments in different contexts, utilizingmanual quantitative/subjective or (semi-)automatic methods. The wide vari-

ety and disciplinary partitions make it hard to get a handle on an outline of those views which have proactively been inspected. The huge

number of daily comments inundating the newsroom can be amazing, particularly when a huge chunk is unfriendly or "contaminated"

in content and tone. When dealing with complex documents such as source code, it can be hard to link the dots between the practical

linguistic information contained within the code as well as the corresponding textual explanation found within the code, making it un-

suitable for use in program analysis and mining assignments. Analysis of code comments on software improvement is examined in this

research. Studies on code comments have been summarized in this paper, which covers four main areas: relevance of code comments,

quality of code comment sources, code comment analysis, as well as a research approach for code comments and dif􀅫iculties. It provides

more comprehensive information for future research by analyzing effective methods for this study issue.

Index Terms— Code comment, Comment analysis, Software, Code mapping

Received: 19 October 2021; Accepted: 11 December 2021; Published: 22 January 2022

Introduction

Code comments are an ordinary practice in software development. Comments describe code relationship, code evaluation, Communica-

tions with a developer's programming language, semantic behavior, annotation language, and code arrange relatively unnecessary and

*
Email: syedzohaibhasan@hotmail.com

© 2022 Journal of Management Practices, Humanities and Social Sciences (JMPHSS). All rights reserved.

https://doi.org/10.33152/jmphss-6.1.9
http://crossmark.crossref.org/dialog/?doi=10.33152/jmphss-6.1.9&domain=pdf
syedzohaibhasan@hotmail.com

Journal of Management Practices, Humanities and Social Sciences 6(1) 88-105

independent information for the program. Software includes a huge number of comments. Various projects are written differently, like a

programming language, server, operating system, desktop applications, free BSD, and open Solaris (Mikolov, 2013). In software systems,

a large portion of the source code is made up of comments, which record the implementation and aid developers in understanding the

code for future modi􀅫ications or reuse: Researchers have found that code with comments is more readable than code without comments.

After the code itself, comments are the second most often utilized documentation item for code comprehension (Pressman, 2005).

Additionally, a system's source code must be documented to ensure its long-term viability. To keep documentation and code up to

date, developers use comments in source code rather than relying on external documentation. A lack of generic documentation leads

to misconceptions, and studies demonstrate that inadequate documentation considerably reduces the maintainability of software. De-

velopers sometimes overlook commenting code because of deadlines and other time constraints throughout the development process

(Vermeulen, 2000). Code comments are more clear, more descriptive, and easy to understand. Comments and code provide redundant

and independent data regarding a program semantic behavior of a program. Code commands include a lot of information that can be used

to improve the maintainability and dependability of a program. Because of the large number of code comments available, analytics such

as Natural Language Processing machine learning approach is in high demand (Pressman, 2005).

Reliability is very important in software operating system servers and desktop applications. For example, software bugs that affect

the server, like operating system, software failure, fewer users, and a huge impact on 􀅫inances (Cusumano, 1995). Code comments pass on

valuable data approximately the framework functionalities, so numerous approaches for computer program designing assignments take

comments as a critical source for code semantic investigation (Corazza, 2011). To the best of our information, recognizing the scope of

comments can contribute to the taking after the program designing task (Paul, 1994).

Most software projects do not include full comments and documentation that signi􀅫icantly impair the readability and maintenance

of the program. Scholars have thus attempted to comment on code using human and automatic techniques. The automated approach

mostly covers how to multiplex and extract comments (YU Hai, 2016). The commenting method coincides with the code segments to be

commented on by other Question Answer systems 􀅫irst. It acquires the correlating descriptive text, a code descriptionmapping, eventually

processing the text description utilizing natural language processing techniques.

In addition, there is no comprehensive model of comment quality. There is a lack of depth and accuracy in coding rules on the issue

of commenting code. So yet, no automated techniques for assessing comment quality have been created since comment analysis is a

complex problem: Aside from using syntactic delimiters, comments are made entirely of natural language. Since algorithms are heuristic,

their solutions are also (Corazza, 2011).

Current quality analysis approaches do not include system comments or restrict them to the comment ratio statistic. According to

software quality, most source code descriptions are ignored. The current study focuses on all the data related to the Code Comment

Analysis; all previously published research is included in this study. The 􀅫irst section of this study is relevant to the study related to code

comment analysis, and the second part covers the comments classi􀅫ication. Different sources evaluate the importance of the third section

of the study.

The quality of source code comments is also discussed in the fourth section of the study. The important section is the code analysis

which is detailed discussed. Researchers have undertaken code comment studies from different angles in recent times that can approx-

imately be split into different ways automatic generation of code comments, consistency of code and comments, classi􀅫ication of code

comments, and quality evaluation of code comments. Furthermore, the Quality of code comments was discussed, and assessment metrics

were studied well. The study summarizes key issues in code comment analysis, solutions, and applications.

Methodology

The study's goal was met by conducting a comprehensive literature review. Code comment analysis, comment categorization, and the

quality of source code comments are all examined in this study's methodology, which is based on synthesis methodology, which contains

aprocedure and 􀅫indings fromall accessible research connected to the issueof interest. It's possible to roughlydivide recent code comment

research into four categories: automated production of code comments, consistency of code and comments, code comment categorization,

major dif􀅫iculties in the study of code comment solutions, applications, and assessment of the quality of code comments.

Search strategy

The comprehensive evaluationof all international scienti􀅫ic paperspublishedup to July2022 inhigher education focusesonCode comment

analysis. We employedWeb of Knowledge, SCOPUS, and ERIC databases as our primary sources during our research. Among the keywords

used to locate relevant papers were "code comment," "code comment analysis," "code analysis," "comment analysis," and "code comment

categorization." Combining keywords also helped restrict the search. The search criteria were incorporated in the titles, keywords, and

abstracts (based on the searches permitted by each evaluated database).

89

Journal of Management Practices, Humanities and Social Sciences 6(1) 88-105

Eligibility criteria

Research articles irrelevant to the study were discarded as a 􀅫irst step. Our research then focuses on articles that include "Code com-

ment analysis" in the title or abstract. At various times in the project and development, data extraction and analysis were performed on

documents that met the inclusion criteria. This collection contains a total of 16 documents.

Selection process

Searching through all three databases, the initial search turned up 100 papers that needed more investigation. Figure 1 illustrates the

manuscript selection process.

Fig. 1. Flow chart diagram of study

Related Studies

General comment analysis, comment development research, and code recognition algorithms are all subcategories of similar studies.

Comment analysis

In 2010, Khamis and colleagues created JavadocMiner, an application that analyses Javadoc comments for quality. They use a set of simple

criteria for assessing both the quality of the comments and their compliance with the code. They're curious about the same thing we are:

how to gauge the quality of comments left by others. They did not investigate whether metrics like reading indexes, nouns, verb count

heuristics, or acronym count heuristics can effectively estimate comment quality. ' It also doesn't discriminate among different types of

comments or indicates any problems among code and comments from outside Javadoc's structural limitations."

Hu (2018, 2020) has previously studied the storage and analysis of task feedback. Task comment quality can only be assessed man-

ually or semi-automatically. We provide a more comprehensive assessment of comment quality instead of only assessing the quality of

task-speci􀅫ic remarks. Jiang (2006) study the feasibility and bene􀅫its of comment analysis to 􀅫ind code problems. They uncovered 12

vulnerabilities in the Linux kernel using this approach, two of which have been con􀅫irmed by the operating system's developers.

Freitas (2020) did study on code comments analysis using contextualized vocabulary. By studying code comments, they could build

a better lexicon for identifying items of admitted technical debt. Using pattern-based code comment analysis, the researchers discovered

that 􀅫inding and categorizing technical debt issues might be easier. Automated comment analysis is required based on such instances.

90

Journal of Management Practices, Humanities and Social Sciences 6(1) 88-105

Thus, the emphasis is on synchronization in the investigation. In contrast, we use a method that analyses comments independently of

their context.

Table I

Previous publications on comment analysis

Authors Research Methods

(Freitas 2020) code comments analysis using contextualized vocabulary

(Khamis, 2010) Javadoc comments on quality evaluation

(Svyatkovskiy, 2020) Comments storage analysis

(Yang, 2019) Comment analysis feasibility and advantages

(Tan L., 2015) Extracting Code Segments by autonomic method

(Panichella, 2012) Finding code explanations from developer communications

Information retrieval techniques

The comments, provided "the code is of excellent quality," offer an accurate account of the code. Information gathering approaches based

on similarity measures for vector space models are used by Roy (2007) to assess the quality of functions. It's like this study, which inves-

tigates the relationship between source code and comments.

A collection of statements neglected in this research are examined in further detail by analyzing their relationship to the technique

name. Code-to-documentation links may also be tracked using information retrieval techniques (Gašević, 2009; Williams, 2005). Such

methods, on either hand, focusmore on the fundamental paradigmof the link between the code and the documentation than on comments.

Table II

Previous publications on retrieval techniques

Authors Research Methods

(Roy, 2007) Cosine similarity-based vector space model retrieval techniques

(Palomba, 2018) Detection of test smells by information extraction

(Gašević, 2009) & (Williams, 2005) Retrieval algorithms to track out code-to-documentation relationships

Evolution of code and comments

Remark evolution is examined by Jiang (2006) to examine the general assertion that developers update code without changing its related

comment. The research, on the other hand, shows that programmers often update the function comments. In Fluri (2007), the authors

investigate how code and comments evolve independently. According to the results, research shows that 97%of all comments are changed

in the same revision as the source code changes. They also look at howmuch work developers put into code commenting over time to see

whether this ratio has an upward or downward trend. There are exceptions to this rule, such as where copyright or commented-out code

should be omitted from this metric (Tan, 2007).

Table III

Previous publications on the evaluation of code and comment

Authors Research Methods

(Jiang, 2006) Examine the prevalent assertion that developers update code without changing its related comment

(Fluri, 2007,) Explore how they develop code and comments

(Tan, 2009) Copyright or commented-out code should be omitted from this metric

Source code recognition

In Section IV, source code recognition is included in comment classi􀅫ication. (Madani, 2010) used support-vector machines (SVMs) with

a precision of 92.97 percent and a recall of 72.17 percent to detect code during email data cleaning. A recall is increased while accuracy

is maintained by using comparable machine learning approaches. Email code can be identi􀅫ied with 94% accuracy and 86% recall using

lightweight approaches (regular expressions and patternmatching). The accuracy and recall of this strategy and ours are almost the same.

Code snippets appear in comments but not in emails.

91

Journal of Management Practices, Humanities and Social Sciences 6(1) 88-105

Comment classi􀅮ication

Noparser or programmer can classify comments based on grammatical rules since all comment types share the same syntax. This problem

can only be solved using heuristic approaches. Due to the large number of criteria that in􀅫luence the categorization decision, we employ

machine learning approaches to categorize comments automatically. We construct seven distinct comment categories. The existing ma-

chine learning libraryWEKA1 is used for implementation. There are seven distinct sorts of comments in the Java and C/C++ programming

languages: • Copyright Comments: The source code 􀅫ile's copyright or licensing information is included in copyright comments. In most

cases, they may be located near the top of the 􀅫ile. • Header Comments: In addition to providing information about the modi􀅫ication

number, class's creator, or review status, header comments offer a summary of the class's functionality. After the importation, but before

the class de􀅫inition, Java headers are detected. • Member Comments: Member comments are inserted on the same line as the member

declaration and explain the method/functionality. Fields help the developer with the project's API. • Inline Comments: Inline comments

describe a method's execution choices in the method's body. • Section Comments: Several 􀅫ields/methods relating to a single functional

aspect are discussed in section comments. As an example, consider the following: // ---- Setter and Getter Methods --- And several setters

and getter methods follow. • Code Comments: The compiler ignores a "commented out" piece of code. Temporarily commenting out code

for troubleshooting or future use is rather frequent. • Task Comments: Todos, bugs, or implementation hiccups may all be found in task

comments, including a developer message.

Fig. 2. Comment classi􀅫ication

Importance of Code Comments

Annotation is the process of inserting a human-readable description (HRD) into a computer program to explain the purpose of the code.

Correct use of comments can make code maintenance easier and help detect errors faster. In addition, comments are essential when

writing functions that others will use. Remember, well-documented code is just as important as well-run code (Van Roy, 2004). Many

comments explain code relationships, code evolution, or how to use and meaning of integers and integer macros. Existing comment

languages can express a large number of comments. Over comments express issues related to timing, but the comment language is not

adequate (Kagdi, 2007).

Software repositories

Ongoing investigations are being conducted into software repository structures. Tools for analyzing software repositories have been

created to help programmers understand and evolve their code more effectively and ef􀅫iciently (Kagdi, 2007). While looking at the co-

evolution of source code as well as the comments that accompany it in software repositories, we had to connect source code objects to the

comments that appeared there (Fluri, 2007).

92

Journal of Management Practices, Humanities and Social Sciences 6(1) 88-105

Learning comments

Our goal, dubbed "learning to comment," is to automate the process of making comments. As a machine learning model, learn common

commenting techniques. After that, use the model to help developers make commenting judgments through the development process.

The essential notion is depicted in Figure 1. Underlying our strategy entails guessing whether the present line will continue depending

on the facts and an appropriate commenting site.

Fig. 3. Essential notion

Code snippet

Software developers commonly comment on a functionally (or logically) independent code snippet (Mikolov, 2013). If the current line is

the 􀅫irst line of a functionally independent code snippet, it is almost certainly a comment placement (Roy, 2007)

Fig. 4. Importance of code comments

Analysis Quality of Source Code Comments

Research and analyze the bene􀅫its of code comments which help in the following aspect.

Software bug reliability

You can look over the comments to detect bugs in the source code

/* This function must be

/* This function must be

/* This function must be

/* This function must be

/* This function must be

93

Journal of Management Practices, Humanities and Social Sciences 6(1) 88-105

*/ The interruption context cannot be used to call this method. According to (Van Roy, 2004) Comment), just 1% of the data was used.

Lock-related problems may be discovered automatically using Linux kernel comments. as well as issues with phone calls. Though it has

been shown that comments may increase software stability, comment has not yet been implemented.

Programming language

Feedback can inspire new programming language extensions or the design of new programming languages. The comment in OpenSolaris

shown below speci􀅫ies the 􀅫ield name to which the value is assigned; for example, 15 is assigned to the length 􀅫ield. Specifying such

information in comments is inconvenient and prone to errors when the structure de􀅫inition changes. The 􀅫ield name in the code, for

example, length = 15. This example shows that programming language extensions have solved some of the comments' requirements.

More extensions of the programming language can be designed by studying the comments.

const struct st_drivetype st_drivetypes []= {. . .
"Unisys", /∗ name . . . ∗
15, /*. length . . . * / ...

Mining detection speci􀅮ication and comment analysis code for error

This is themain content of this chapter. This section uses examples to introduce automatic annotation analysis for speci􀅫ication extraction

and error detection. As mentioned above, there are a lot of notes in the software that contains a lot of information. Some information is

only available in the code because the developer will not repeat all information in the code in the comment (Gašević, 2009). On the other

hand, comments contain information that cannot be easily extracted from the source code.

For example, changes that need to be made together (/* Warning: If you change any of these de􀅫initions, make sure to change the

de􀅫inition in the X server 􀅫ile (radeon_sarea.h) */, there are still tasks to be processed (/* FIXME: We should group addresses here. * /),

the unit of the variable, the reason for not selecting a speci􀅫ic algorithm, and the author information of the 􀅫ile. In addition, comments and

codes also contain redundant information (Gašević, 2009). For example, the comment inOpenSolaris states that theheld lockmust beused

to call the taskq_ent_free (Williams, 2005) function and asks to create a common () to acquire the lock before running the taskq_ent_free

(Gašević, 2009) function.

There is a lot of repetitive information in the comments and excerpts. The redundancy in this example is consistent. Figure 1 shows an

example where the remark doesn't 􀅫it the code, which is undesirable. Checking for errors in the comment code is made easier because of

the program's redundant information on its semantic behavior. Commentary often lags behind the source code during software develop-

ment (Padioleau, 2009). Code that doesn't follow commented comments is an error, whereas code that does follow correctly commented

comments are both inconsistent (Tan, 2009).

Fig. 5. Analysis quality of source code comments

Analyzing Code Comments

Analysis comments can extract speci􀅫ications, also known as programming rules, which can be used.

• To detect errors and incorrect comments

94

Journal of Management Practices, Humanities and Social Sciences 6(1) 88-105

• To assist developers, prevent new problems, and better comprehend the code, enhancing the program's dependability and ease of

maintenance.

In order to prevent unauthorized access to data provided inside reset hardware (), the function's caller must get a lock, as shown in

Figure 5. In this case, the comment speci􀅫ication does not apply, and the code may violate the speci􀅫ication. As seen in Figure 5, this is a

2.6.11 kernel bug. Before executing the in 2000 bus reset method, the lock was not released (Tan, 2015).

We looked at the generalizability of our approach and its relevance to two speci􀅫ic positions in the 􀅫ield of software engineering. There

are two possible explanations for the selection of such two. In addition, the scopes of work information were used in both jobs. Block or

line comments. There are a few considerations to consider while translating code to block/line comments.

The second bene􀅫it is that their data and code are free to use and develop. We have to perform three things to do this. Research-based

on facts As part of the 􀅫irst research, we calculated the accuracy approach to see how successful and resilient our technique was. Further-

more, the selection of features and comment scope sizes are crucial. Lastly, we evaluated the equivalent measures of our technique on

projects that had just been started up. Second, we utilized our way to check for coherence in the comment code and compared it to the

originally suggested method.

0%
20%
40%
60%
80%

100%

Statement
inside the
scope

Statement
outside the
scope

Fig. 6. Statements inside and outside of the scope

The accuracy of our approach in recognizing comment scopes is somethingwe'dwant to test. To begin, we used a classi􀅫ier to separate

statements into two groups: those which 􀅫it within the comment's scope and those that are outside the comment's scope.

Table IV

Comment code

C1 There is nine type of statements 1) If-statements, 2) While-statements, 3) For-statements, 4) Enhance For-statements, 5) TryCatch-statements, 6) Variable Declaration-statements, 7) Return- statements, 8) Break-statements, 9) Throw-statement

C2 The number of the sub-statements of the current statement

C3 The number of layers of statements nested in the current statement

C4 The number of lines of code in the current statement

C5 Does the current statement have the same method calls with the last statements and the following statements

C6 Same variables Does the current statement use the same variables with the last statements and the following statements

C7 Is the preceding line of the current statement blank

C8 Is the following line of the current statement blank

The second component is the ability to leave comments onposts. This data is gained via comment features. Weemployed the following

natural language processing methods to preprocess comments.

• Word Splitting

• Stop word removal

• Word stemming

The number of words, verbs, and nouns in the remark was then tallied. Depending on our studies on posting behavior, we noticed that a

comment preceded by a blank line is frequently used to summarise a block of code. as a result, I was wondering if a comment's next line

is blank or not. It's now part of the commenting system.

95

Journal of Management Practices, Humanities and Social Sciences 6(1) 88-105

Table V

Comment feature

No. Feature Description

Cml Length of the comment The number of words in the comment

Cm2 No. of verbs The number of verbs in the comment

Cm3 No. of nouns The number of nouns in the comment

Cm4 Following blank line Is The following line of the comment blan

Research Method

Researchershaveundertaken code comment studies fromdifferent angles in recent times that can approximately be split into the following

ways: automatic generation of code comments, consistency of code and comments, classi􀅫ication of code comments, and quality evaluation

of code comments.

Automatic code comment generation

Automatic Code Comments generation, i.e., code segments comparable to source code are identi􀅫ied in the target program as per existing

code comments, and would then source code segments comment be matched by a series of processes to the code segments of the target

software. Code comments enhance the maintenance of software by enabling engineers to comprehend code. Although code comments

are necessary and important, several code libraries do not include adequate comments. Many academics have investigated methods to

extract code comments (Table – 4).

Table VI

Previous publications on automatic code comments generation

Authors Research Methods

(Song, 2019) Algorithms and techniques

(Liu, 2019) Automatic code Comments generation by pull request

(Liang, 2018) Automatic generation of text descriptive comments for code blocks

(Chatterjee, 2017) Extracting Code Segments by autonomic method

(Panichella, 2012) Mining source code descriptions from developer communications[C]

Code comments may be automatically generated in the following categories.

Method based on templates

Sridhara (2010) also proposes a novel approach for automatically generating descriptive comments for Java method parameters. They

utilize heuristics to produce observations that can be readily incorporated into the IDE to offer an up-to-date parameter description

when a software developer edits a particular procedure. (Wong, 2013). offer a technique for automatically generating code comments by

removing large-scale data from the Stack Over􀅫lowQuestion and Answer (Moreno, 2013). offer a technique for generating structured Java

classes' natural language summaries automatically. McBurney (McMillan, 2014) proposes a novelway to generate Javamethod summaries

automatically. This method describes the method context, not the speci􀅫ics inside the method.

Table VII

Previous publications on a method based on the template

Authors Research

(Hu, 2018) Deep code comment generation by using the template method

(Syriani, 2018) Template-based code generation Systematic mapping study

(Sridhara, 2010) With the use of Java methods, generate summary comments

(Wong, 2013) Mining question and answer sites for automatic comment generation

(Moreno, 2013) Natural language automatic generation of

(McMillan, 2014) source code summarization

Method based on keywords

To enhance technology, (Rodeghero, 2014) offers a programmer survey throughout the aggregation process of source code, which is an

instrument to pick keywords based on the eye tracking 􀅫indings of the study. Sonia (2010) are studying the use of automated text summary

96

Journal of Management Practices, Humanities and Social Sciences 6(1) 88-105

methods to produce comments with the source code. Laura Moreno et al. (2013). provide a comprehensible how to create Java classes

automatically.

Table VIII

Previous publications on keywords

Authors Research

(Hu, 2020) Code generation with hybrid lexical and syntactical information

(Svyatkovskiy, 2020) Code generation using a transformer

(Rodeghero, 2014) Source code summarization via a keyword

(Sonia, 2010) text summarization techniques for summarizing source code

(Lauramoreno, 2013) Automatic generation of natural language summaries for Java classes

Method based on machine learning and neural network Most techniques known as machine education and neural networks teach

code comments, get training data and map these to uncommented code segments autonomously. The commentary on the subject model

andn-gram is predictedby (Movshovitz-Attias, 2013). Allamanis (2015) offer a continuous embeddingmodel, like a SourceCode summary

recommending correct methods and class names. Iyer et al. (2016) propose a novel CODE-NN model that utilizes a network of Long and

Short Memory (LSTM) to create phrasing for C# code snippets and SQL queries. Adrian (2007) utilizes the ID and comments to mine the

source code repository topic. Punyamurthula (2015) uses the call graph to collectmetadata and source code dependency information and

then utilizes this to evaluate and subject to source code.

Table IX

Previous publications on methods based on image

Author Research

(Liu Yihong, 2018) Image Feature Extraction method

(Qin Ming, 2018) Image Semantic Comment

(Li Hongwei et al., 2016) Code semantic annotation method

Method based on image

The image-based approach splits the picture by extracting characteristics and then automatically combines the words of the remark to

comment on the image (Liu, 2019). offer image extraction and semantic comment techniques based on visual memory utilizing human

visual memory mechanisms and mechanisms to solve the issue of extraction and marking of image functions. Based on multimedia-

related models (Qin Ming, 2018.) present a novel photo memantine comment technique that fuses information in the picture category

and improves comment outcomes by utilizing an association rule mining algorithm.

Table X

Previous publications on machine learning and neural network

Authors Research

(LeClair, 2020) Improved code summarization via neural network

Xu (2019) Commit message generation for source code changes

(Movshovitz-Attias, 2013) Natural language models for predicting programming comments

Allamanis (2015) text summarization techniques for summarizing source code

Iyer (2016) Summarizing source code using the CODE-NN model

Adrian (2007) Identifying topics in source code

Punyamurthula (2015) Dynamic model generation

Li Hongwei (2016) proposed a technique of code labeling. This means the obtaining of code grammar information through the use of

the common software reverse analysis technology and the use of IR technology to process the source code text. Then it acquires the terms

for applicants' business based on them and uses a domain ontology to retrieve the concept of ontology for applicants' business terms.

Quality of Code Comments

Comment qualitymay be evaluated quantitatively and qualitatively using our semi-automatic technique. It is possible to analyze and eval-

uate the quality of comments using a semi-automatic technique. For both Java and C/C++ projects, we use machine learning to categorize

the many sorts of comments in the code. One may perform a quantitative and qualitative examination of the system's comment ratio by

97

Journal of Management Practices, Humanities and Social Sciences 6(1) 88-105

classifying comments. Our thorough quality methodology is based on the classi􀅫ication of comments. Consistency across the project, sys-

tem documentation completeness, code coherence, and reader utility are the four quality factors for each comment category in themodel.

To analyze quality qualities, we give metrics that identify quality faults in particular comment categories. Separately, the validity and rel-

evance of themeasure are assessed: A poll of experienced software engineers is used to determine the validity of the 􀅫indings. The survey

results suggest that metrics may provide extra recommendations for refactoring. It turns out that comment classi􀅫ication provides better

information about the quality of documents than just a simple comment ratio statistic and that our measurements identify quality issues

in practice (Paul ,2014). Code comments' quality may be evaluated by determiningwhat constitutes the Quality of code comments. As per

the author's study (Stamelos 2002), high-level explanations of what the program has been doing must be provided in the comments. It

is not necessary to reiterate the "obvious." Most development teams nowadays place a high value on quality. Even more so for those who

are creating safety-related solutions. According to Steidl (2013) the quality model can be used to explain the metrics as shown in Figure

6; tasks can be categorized into hierarchical trees, with the roots at the bottom and the branches at the top.

Fig. 7. Positive impacts (+) and negative impacts (-) of entities on activities

Criteria re􀅫lect the in􀅫luence of a certain entity on a given activity by representing quality elements for various entities. It's clear from

the study of (Steidl 2013) that comments may signi􀅫icantly in􀅫luence developers' work. This model is based on the following four criteria:

• Coherence looks at how comment and its code work together. It also looks at how a single comment relates to the rest of the code.

Because this is a strong signal that this comment is ready and impactful, member comments must be linked to the method name.

This helps you call public methods and know how the system works. Developers also predict member as well as inline comments

to explain these things that aren't obvious by giving information that goes further than the code to make them understand im-

plementation as well as design details. Member comments, on the other hand, must give us more information than just having to

repeat the method name (Moreno, 2013).

• Usefulness is the things that make a single comment to help people understand the system. Comments must help people under-

stand what a piece of code is for. In general, people who read the code should 􀅫ind the comment useful. It wouldn't be very useful

if the comment didn't make it more dif􀅫icult to understand the source code. The things that make it easier to understand and use

code are made easier by clear, helpful comments (Wong, 2013).

• Completeness Putting copyright at the end of each 􀅫ile gives you all the information you need about copyrights, and putting a header

at the start of each class shows how the system is built. Writing a remark for every public method and 􀅫ield enables an API user to

select which public methods and 􀅫ields to utilize (Paige 2014).

Items that must be consistent throughout the system are known as consistency qualities. To make reading comments simpler, they

must be written in the same language as the code itself (for example, English). Each 􀅫ile should also be under the same copyright and

formatted in the same way, which will help people learn about copyrights and authors. Figure 1 shows how the four quality criteria

impact each other. In general, we don't like code comments because they don't give us any information. The effect matrix illustrates that

only a few factors help individuals grasp the system. Comments in the header, member, inline, and section can aid in the identi􀅫ication

of methods and 􀅫ields, as well as in the comprehension of the system's architecture and the actual operation of the various components

98

Journal of Management Practices, Humanities and Social Sciences 6(1) 88-105

(Sridhara, 2010). Copyright notices and duties should also be included in the documentation. The quality model recommends using

automated assessments. Just the consistency category is discussed in this study. Consistency and utility may be found in Ayala (2021).

Wemay better de􀅫ine the criteria by de􀅫ining separate attributes for various things. Positive or negative, each characteristic indicates

whether the object (comment type) is intended to aid or impede the action, it is linked with. Hand-analyzing the training data allowed

us to discover and characterize these effects. Using the four basic criteria as a guide, we explain how each feature affects certain actions

(Panichella, 2012).

Fig. 8. Positive impacts (+) and negative impacts (-) of entities on activities

(Rani 2021) shows the best practices for writing code comments in their study. Firstly, comments should not be the same as the code.

They write too many comments because they were taught to do so by their 􀅫irst teachers. Computer science students in the upper levels

often add a comment to each closed brace to show which block is coming to an end:

if (x > 3)

…

// if

I've also heard of teachers making their students write a comment for every line of code they write down. This might be a good idea

if you're an extreme beginner, but you should take off your training wheels while biking with the big kids. It takes time to write and read

comments that don't add information, which can become out-of-date (Chatterjee, 2017). The canonical bad example is:

i = i + 1; // Add one to i

It doesn't add any information as well as costs money to keep up (Sonia 2010).

If you write bad code, don't leave a comment about it. You should write new code instead. The third thing to remember is that the

code you're developing could have an issue if you can't make an explicit remark about it. If you look at the code for the Unix operating

system, you're not expected to comprehend this statement. When it was created, there wasn't a lot of code to allow for context switching

among various sorts of contexts. Afterward, he explained that he intended it as "This won't be on the test," not as an "impolite" question

(Miltiadis, 2015). Trying to 􀅫ind out what went wrong is twice as hard as developing the code itself, which gets us to Kernighan's Law

(Movshovitz-Attias, 2013). If you create the code as intelligently as feasible, you'll never be capable of 􀅫iguring out how to repair it. "

When you turn on your lights and siren in your automobile, you're admitting that you're doing something illegal. Alternatively, rewrite

the code in a way that you can understand or that is easy to understand (Tan, 2015).

Lastly, comments are meant to clarify rather than complicate an issue. To illustrate this point, Steven Levy cites the story of an

anonymous blogger who was hacked after posting an offensive remark. Because of this, [Peter Samson] was so dif􀅫icult to comprehend.

He didn't explain what he does in his source code. There have been hundreds of commands in Samson's well-known program, and only

one remark adjacent to instruction with the number 1750was only there because it was 1750 (Srinivasan Iyer, 2016). Since 1750was the

year Bach died, and Samsonwrote RIPJSB as an acronym for Rest In Peace Johann Sebastian Bach,most peoplewouldn't knowwhat RIPJSB

meant. Since I'mAbig fanof a goodhack, thiswasnot oneof them. You shoulddelete your remark if you're causingmoremisunderstanding

than solving the problem rather than trying to help (Tan L., 2009).

The 􀅫ifth rule states that comments must be used to clarify any code that isn't clear. A remark such as this should be included in any

code that somebody else thinks is unneeded or repetitive:

Though in the absence of explanation, somemay conclude that the code has been "re􀅫ined" or that it is powerful but enigmatic magic.

To what purpose did you devote yourself to coding the program? It would help if you didn't have to bother about it for potential readers.

Not whether a code explanation is necessary (Adrian et al., 2007).

Aswithmost programmers, many programmers employ code developed by other programmers (Padioleau et al., 2009). The equation

is the 􀅫irst place anybodywhowants to learn this codewill look. A lot of time is saved by copying and pasting theURL rather than searching

for the reference afterward. Reusing code is a great idea because it can save you time and put your work with somanymore people. Some

programmers could not indicate that they didn't develop the code themselves. Nobody should write code that they have been unsure

99

Journal of Management Practices, Humanities and Social Sciences 6(1) 88-105

about. People always steal Stack Over􀅫low solutions to inquiries and paste them into their own codebases. Creative Commons licenses

allow you to credit the author of the code. This condition may be met with a reference comment (Williams, 2005).

Linking to standards and other documentationmaymake it simpler to understandwhat your code ismeant to perform. Awell-placed

remark helps readers access this information when and where they need it the most. RFC 4180 has been updated by RFC 7111, which is

helpful if you click on the link. However, A comment should be included whenever a bug is 􀅫ixed (Scalabrino, 2019). Sometimes you need

to make changes to your code, such as when you patch a problem and 􀅫ind yourself needing to add comments. This remark is critical for

several reasons. It aided in comprehending the code in the present and referred to methods by the reader. Additionally, it aids them in

determining whether or not the code is still necessary and how to test it (Ming et al., 2018).

If the attributes don't have a title, use the name instead. The last time a phrase or line was added or altered may be found using git

blame. Since commit messages tended to be brief, the most signi􀅫icant change may well not have been included in the previous commit

that's been made (Li Hongwei, 2016). Use the comments and let others realize if their ideas aren't complete. The need to verify in code

with known bugs isn't always a bad thing. Make your code problems obvious by adding an "At Do" not to the end of each line of code

(Chatterjee, 2017).

Assessment Metrics

It's possible to use git blame to look up the last time a certainword or linewas added or changed. But because commitmessages tend to be

short, the most important change (e.g., 􀅫ixing issue #1425) may not be part of the last commit that was made (e.g., moving a method from

one 􀅫ile to another). Use comments to let people know that their ideas aren't done. Sometimes, it's important to check in code despite its

known 􀅫laws. It would help if you clari􀅫ied your code 􀅫laws by adding a "To Do" note (Chatterjee, 2017).

Coherence between code and comments

The coherence coef􀅫icient (c coeff) is a way to measure how well member comments, as well as method names, go together. It looks at

the attributes of member comments that aren't obvious and are linked to the method name. Illustrates an example where the comment

helps to explain what is obvious, which is why it isn't needed in this case. Due to a noninformative comment or a noninformative ID, the

comments in Figures 3 and 4 are not related to the method name, which is why they are there. Calc Eigenvalue Decomposition should

be the new name of the method in this case. Our new metric will be able to 􀅫ind all three of them. Metric. Comment: We look for words

in the comment and compare them to words in the method name. A camel casing method is used to get the words in the method name.

Words in the comment are assumed to be separated bywhite spaces. This is howmanywords from one setmatchwords from another set.

They are similar if the distance between two words is less than 2. It is called the number of similar words divided by the total number of

comment words. The coef􀅫icient c of the comment is 0.75. Based on some tests with manual evaluation, we set two thresholds and looked

at member comments with c coeff = 0 and c coeff > 0.5 (Wen, 2019).

Length of comments

As the secondmetric, we look at the length of inline comments to see howwell they 􀅫it into the rest of the code. This shows howwell they

􀅫it into the rest of the code. This looks at the quality attribute that says that inline comments aren't obvious. Scientists haven't looked into

the role of very short or very long inline comments.

Key Issues and Solutions

Comments for automated creation, consistency modi􀅫ication, categorization, and quality assessment are now extensively utilized. It may

make it simpler for engineers to comprehend the source code. Commentsmay also be used as a pseudo code to express purpose before the

real code is written. In this instance, the reasoning behind the code should be explained rather than the code itself. There are, however,

many shortcomings and limitations regarding the related literature, including several aspects. The automatic creation of code comments

is less accurate. Researchers have conductedmany studies on code observations in recent years. However, there are still some dif􀅫iculties

in generating code comments, such as less automation and irregular comments for automated creation and decision-making of code com-

ments, for instance, which codesmust be remarked on andwhich commentsmust be followed. Since the standards are not yet recognized,

the accuracy of the 􀅫inal results is not great. Limited situations are available to use the code comments (Antoniol, 2000).

Although the study of code comments in recent years has received signi􀅫icant attention, there are several dif􀅫iculties in the present

research, including unclear methodologies, unambiguous or inef􀅫icient 􀅫indings, and a lack of appropriate tools to suggest and manage

comments. The previous study has mainly assessed and forecasted by collecting certain metrics of code comments attributes that are

100

Journal of Management Practices, Humanities and Social Sciences 6(1) 88-105

seldom linked to real software codemodi􀅫ications. There are very few studies on code comment evolution. It takes a lot of time andworks

for the experiment to investigate and solve these shortcomings that have a major effect on software development andmaintenance; since

there are no recognized standards, automation and control are not high, and the quality of the results produced is comparatively poor.

Therefore, time and labor must be reduced appropriately (Howard, 2013).

Solution

Following the questions posed above, this section offers possible answers and future research directions in response.

• Machine learning, natural language processing, and other cutting-edge technologies may all be used in conjunction with a single

algorithm to revolutionize code comment research.

• More speci􀅫ic ways for commenting on code should be adopted or recommended to enhance understanding & reading of code in

light of multi-source software products and practical demands.

• Coding in other 􀅫ieldswill be encouragedby its broadusage and role in resolving real-worldproblems. For instance, code comments

are often used in the open-source and arti􀅫icial intelligence domains (Padioleau, 2009).

Application

The study presented here is the 􀅫irst step toward a more thorough examination of code comments. Here, we examine both our strengths

and faults. To evaluate the quality of comments, we conducted a quantitative and qualitative analysis: Compared to the prior comment ra-

tio, our comment categorization provides more quanti􀅫iable data about how individuals are commenting on the system. Besides a survey

and a case study, we provide two measures for identifying quality issues in comments and making refactoring recommendations. A one-

time quality audit or ongoing quality checks to monitor how well the system comments over time may use the comment categorization

and metrics (Lemos, 2020). C coeff and length indicators may be used throughout development to provide warnings about missing com-

ments or shoddy code in the IDE. It is a frequent use scenario for quality control, although the recommended metrics are semi-automatic

and need human intervention. In our study, you can't use this approach to rank the quality of a large number of projects' comments. Also,

it doesn't provide a clear view of the quality of the feedback. As a basis for thorough quality analysis, this work provides comment kinds

and an evaluation methodology for the quality of comments. As with code quality measures, ours simply highlight issues and cannot

immediately identify whether anything is excellent (Lemos, 2020)

Conclusion

Commenting on a program is essential to its development and understanding. Tracking comments and source code items in an auto-

mated fashion are seldom simple. The ranges of source code comments may be automatically recognized using a machine learning-based

approach shown in this study. Our approach for determining the breadth of a remark was effective because it employed three features.

Two software engineering projects were also implemented using our technique. Improved performance and ef􀅫iciency were achieved in

both activities. It would be simpler for other autonomous software strategies to use our comment scope detection approach as a generic

approach. In the future, we want to use the information in comments and code snippets to integrate the technology with more automated

software artifacts (e.g., code search). Further natural language processing techniques will be investigated to enhance the assessment

of semantic similarities between comments and assertions. Using a learning-based method will also improve the precise positioning of

comment scopes.

The use of code comments is essential to understanding the program and the software's maintenance. Automated code comment

generation, consistency in code comment creation, classi􀅫ication in code comment creation, and code quality assessment comments are

all covered in this article. Software system development and maintenance bene􀅫it greatly from the inclusion of code comments. It is

incredibly bene􀅫icial for programmers to read and understand the code. The academic community has been studying code for a long time,

yet numerous challenges and responsibilities remain. Future scholars may use this paper as a guide. To aid code inspectors in selecting

suitable tools and procedures, the study's resultsmay point to residual open-line research dif􀅫iculties and potential future projects, among

other things.

This study was the 􀅫irst to develop a method for examining and evaluating code comments thoroughly. It is the cornerstone of a

model of comment quality to use machine learning to categorize comments. Quality aspects like coherence, consistency, completeness,

and usefulness are discussed in detail. We came up with two approaches to gauge the model's quality: the coherence coef􀅫icient and the

length indicator.

A poll of developers who had worked on comparable projects was then conducted. According to the case study results, our approach

can give a much more in-depth analysis than previous approaches: Just counting how many individuals have commented on a system

101

Journal of Management Practices, Humanities and Social Sciences 6(1) 88-105

document does not provide asmuchquantitative information as categorizing the comments into categories. Thismetrics collection reveals

dif􀅫icultieswith code commenting that are frequent in practice for a qualitative examination. Reorganization ideasmay also bemade using

metrics. You can see this by looking at the length indicator when there are inline comments with more than twowords. The c coeff metric

looks for both comments that don't provide enough data and methods with incorrect method IDs. It will be used in the future to evaluate

the quality of comments. We still need to determine exactly howmany additional areas of comment quality could be analyzed entirely or

semi-automatically and just howmany must be done manually.

102

Journal of Management Practices, Humanities and Social Sciences 6(1) 88-105

REFERENCES

Allamanis, M. B. (2015). Suggesting accurate method and class names. In Proceedings of the 2015 10th Joint meeting on Foundations of

Software Engineering, Bergamo, Italy. https://doi.org/10.1145/2786805.2786849

Antoniol, G. C. (2000). Tracing object-oriented code into functional requirements. In Proceedings IWPC 2000. 8th International Workshop

on Program Comprehension, Limerick, Ireland.

Ayala, C. T. (2021). Use and misuse of the term experiment in mining software repositories research.IEEE Transactions on Software Engi-

neering (Ahead of print). https://doi.org/10.1109/TSE.2021.3113558

Chatterjee, P. G. (2017). Extracting code segments and their descriptions from research articles. In 2017 IEEE/ACM 14th International

Conference on Mining Software Repositories (MSR), Buenos Aires, Argentina. https://doi.org/10.1109/MSR.2017.10

Corazza, A. D. (2011). Investigating the use of lexical information for software system clustering. In 15th European Conference on Software

Maintenance and Reengineering, Oldenburg, Germany. https://doi.org/10.1109/CSMR.2011.8

de Freitas Farias, M. A. (2020). Identifying self-admitted technical debt through code comment analysis with a contextualized vocabulary.

Information and Software Technology, 121, 106270. https://doi.org/10.1016/j.infsof.2020.106270

Fluri, B. W. (2007). Do code and comments co-evolve? on the relation between source code and comment changes. In 14th Working

Conference on Reverse Engineering (WCRE 2007), Vancouver, BC. IEEE.https://doi.org/10.1109/WCRE.2007.21

Fluri, B. W. (2009). Analyzing the co-evolution of comments and source code. Software Quality Journal, 17(4), 367-394. https://doi.org/

10.1007/s11219-009-9075-x

Gašević, D. K. (2009). Ontologies and software engineering. In Handbook on Ontologies. Berlin, Heidelberg: Springer. https://doi.org/

10.1007/978-3-540-92673-3_27

Haav, H. M. (2001). In Proceedings of the 5th East-European Conference ADBIS, Vilnius, Lithuania.

Haiduc, S. A. (2010). On the use of automated text summarization techniques for summarizing source code. In 17th Working Conference

on Reverse Engineering, Beverly, MA. https://doi.org/10.1109/WCRE.2010.13

Howard,M. J. S. (2013). Automaticallymining software-based, semantically-similarwords fromcomment-codemappings. In 10thworking

conference on mining software repositories (MSR), San Francisco, CA. https://doi.org/10.1109/MSR.2013.6624052

Hu, X. L. (2018). Deep code comment generation. In IEEE/ACM 26th International Conference on Program Comprehension (ICPC). Gothen-

burg, Sweden. https://doi.org/10.1145/3196321.3196334

Hu, X. L. (2020). Deep code comment generation with hybrid lexical and syntactical information. Empirical Software Engineering, 25(3),

2179-2217. https://doi.org/10.1007/s10664-019-09730-9

Jiang, Z.M. (2006). Examining the evolution of code comments in Postgre SQL. InProceedings of the 2006 InternationalWorkshop onMining

Software Repositories, Trier, Germany. https://doi.org/10.1145/1137983.1138030

Kagdi, H. C. (2007). A survey and taxonomy of approaches for mining software repositories in the context of software evolution. Journal

of Software Maintenance and Evolution: Research and Practice, 19(2), 77-131. https://doi.org/10.1002/smr.344

Khamis, N. W. (2010). Automatic quality assessment of source code comments: The JavadocMiner. In International Conference on Appli-

cation of Natural Language to Information Systems, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13881-2_7

Kuhn, A. D. (2007). Semantic clustering: Identifying topics in source code. Information and software technology, 49(3), 230-243. https://

doi.org/10.1016/j.infsof.2006.10.017

Lalband, N. &. (2019). Software engineering for smart healthcare applications. International Journal of Innovative Technology and Explor-

ing Engineering, 8(6S4), 325-331. https://doi.org/10.35940/ijitee.F1066.0486S419

LeClair, A. H. (2020). Improved code summarization via a graph neural network. In Proceedings of the 28th international conference on

program comprehension, Seoul, Republic of Korea. https://doi.org/10.1145/3387904.3389268

Lemos, O. A. (2020). Comparing identi􀅫iers and comments in engineered and non-engineered code: A large-scale empirical study. In

Proceedings of the 35th Annual ACM Symposium on Applied Computing, New York, NY. https://doi.org/10.1145/3341105.3373972

Liang, Y. &. (2018). Automatic generation of text descriptive comments for code blocks. In Proceedings of the AAAI Conference on Arti􀅲icial

Intelligence, Washington, DC. https://doi.org/10.1609/aaai.v32i1.12233

Liu, Z. X. (2019). Automatic generation of pull request descriptions. In 34th IEEE/ACM International Conference on Automated Software

Engineering (ASE), San Diego, CA. https://doi.org/10.1109/ASE.2019.00026

Madani, N. G. (2010). Recognizing words from source code identi􀅫iers using speech recognition techniques. In 14th European Conference

on Software Maintenance and Reengineering, Madrid, Spain. https://doi.org/10.1109/CSMR.2010.31

103

https://doi.org/10.1145/2786805.2786849
https://doi.org/10.1109/TSE.2021.3113558
https://doi.org/10.1109/MSR.2017.10
https://doi.org/10.1109/CSMR.2011.8
https://doi.org/10.1016/j.infsof.2020.106270
IEEE.https://doi.org/10.1109/WCRE.2007.21
https://doi.org/10.1007/s11219-009-9075-x
https://doi.org/10.1007/s11219-009-9075-x
https://doi.org/10.1007/978-3-540-92673-3_27
https://doi.org/10.1007/978-3-540-92673-3_27
https://doi.org/10.1109/WCRE.2010.13
https://doi.org/10.1109/MSR.2013.6624052
https://doi.org/10.1145/3196321.3196334
https://doi.org/10.1007/s10664-019-09730-9
https://doi.org/10.1145/1137983.1138030
https://doi.org/10.1002/smr.344
https://doi.org/10.1007/978-3-642-13881-2_7
https://doi.org/10.1016/j.infsof.2006.10.017
https://doi.org/10.1016/j.infsof.2006.10.017
https://doi.org/10.35940/ijitee.F1066.0486S419
https://doi.org/10.1145/3387904.3389268
https://doi.org/10.1145/3341105.3373972
https://doi.org/10.1609/aaai.v32i1.12233
https://doi.org/10.1109/ASE.2019.00026
https://doi.org/10.1109/CSMR.2010.31

Journal of Management Practices, Humanities and Social Sciences 6(1) 88-105

McBurney, P. W., & McMillan, C. (2014). Automatic documentation generation via source code summarization of method context. In

Proceedings of the 22nd International Conference on Program Comprehension, New York, NY.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Ef􀅫icient estimation of word representations in vector space. Retrieved from https://

bit.ly/3CVn8de.

Moreno, L. A. S. (2013). Automatic generation of natural language summaries for java classes. In 21st International Conference on Program

Comprehension (ICPC), San Francisco, California. https://doi.org/10.1109/ICPC.2013.6613830

Movshovitz-Attias, D., & Cohen, W. (2013, August). Natural language models for predicting programming comments. In Proceedings of the

51st Annual Meeting of the Association for Computational Linguistics, So􀅫ia, Bulgaria.

Nolan, D. &. (2014). XPath, XPointer, and XInclude. In XML and Web Technologies for Data Sciences with RSpringer, New York, NY. https://

doi.org/10.1007/978-1-4614-7900-0_4

Padioleau, Y. T. (2009). Listening to programmers-taxonomies and characteristics of comments in operating system code. In IEEE 31st

International Conference on Software Engineering, Washington, DC. https://doi.org/10.1109/ICSE.2009.5070533

Palomba, F. Z. (2018). Automatic test smell detection using information retrieval techniques. In IEEE International Conference on Software

Maintenance and Evolution (ICSME), Limassol, Cyprus. https://doi.org/10.1109/ICSME.2018.00040

Panichella, S. A. (2012). Mining source code descriptions from developer communications. In 20th IEEE International Conference on

Program Comprehension (ICPC), Passau, Germany. https://doi.org/10.1109/ICPC.2012.6240510

Paul, S. &. (1994). A framework for source code search using program patterns. IEEE Transactions on Software Engineering, 20(6),

463-475. https://doi.org/10.1109/32.295894

Pressman, R. S. (2005). Software engineering: A practitioner's approach. London, UK: Palgrave macmillan.

Punyamurthula, S. (2015). Dynamicmodel generation and semantic search for open source projects using big data analytics (Master thesis).

University of Missouri, Kansas City, Missouri.

Qin Ming, C. M. (2018). Image Semantic Comment Based on Classi􀅫ication Fusion and Association Rules Mining. Computer Engineering

and Science.

Rodeghero, P. M. (2014). Improving automated source code summarization via an eye-tracking study of programmers. In Proceedings of

the 36th International Conference on Software Engineering, Hyderabad, India. https://doi.org/10.1145/2568225.2568247

Roy, C. K. (2007). A survey on software clone detection research. Queen's School of Computing TR, 541(115), 64-68.

Scalabrino, S. B.V. (2019). Automatically assessing code understandability. IEEE Transactions on Software Engineering, 47(3), 595-613.

https://doi.org/10.1109/TSE.2019.2901468

Song, X. S. (2019). A surveyof automatic generationof source code comments: Algorithmsand techniques. IEEEAccess, 7, , 111411-111428.

https://doi.org/10.1109/ACCESS.2019.2931579

Sridhara, G. H. S. (2010). Towards automatically generating summary comments for java methods. In Proceedings of the IEEE/ACM Inter-

national Conference on Automated Software Engineering, Montpellier, France. https://doi.org/10.1145/1858996.1859006

Srinivasan I. K. (2016). Summarizing source code using a neural attention model. In ACL, Berlin, Germany.

Svyatkovskiy, A. D. (2020). Intellicode compose: Code generation using transformer. In Proceedings of the 28th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the Foundations of Software Engineering, Athens, Greece. https://

doi.org/10.1145/3368089.3417058

Syriani, E. L. (2018). Systematic mapping study of template-based code generation. Computer Languages, Systems & Structures, 52, 43-62.

https://doi.org/10.1016/j.cl.2017.11.003

Tan, L. (2009). Leveraging code comments to improve software reliability (PhD thesis). University of Illinois at Urbana-Champaign, Cham-

paign, IL.

Tan, L. (2015). Code comment analysis for improving software quality. In The art and science of analyzing software data. Burlington, MA:

Morgan Kaufmann.

Tan, L., Yuan, D., Krishna, G., & Zhou, Y. (2007, October). /* iComment: Bugs or bad comments?*. In Proceedings of Twenty-First ACM

SIGOPS Symposium on Operating Systems Principles, New York, NY. https://doi.org/10.1145/1323293.1294276

Tan, L., Yuan, D., & Zhou, Y. (2007, May). Hotcomments: How to make program comments more useful? In HotOS, San Daiego, CA.

Van Roy, P. (2004). Concepts, techniques, and models of computer programming. Cambridge, MA: MIT press.

Vermeulen, A. A. (2000). The elements of Java (tm) style. CambridgeUniversityPress, Cambridge,MA. https://doi.org/10.1017/CBO9780511585852

Wen, F. N. (2019). A large-scale empirical study on code-comment inconsistencies. In IEEE/ACM27th International Conference on Program

Comprehension (ICPC), Montreal, QC. https://doi.org/10.1109/ICPC.2019.00019

104

https://bit.ly/3CVn8de
https://bit.ly/3CVn8de
https://doi.org/10.1109/ICPC.2013.6613830
https://doi.org/10.1007/978-1-4614-7900-0_4
https://doi.org/10.1007/978-1-4614-7900-0_4
https://doi.org/10.1109/ICSE.2009.5070533
https://doi.org/10.1109/ICSME.2018.00040
https://doi.org/10.1109/ICPC.2012.6240510
https://doi.org/10.1109/32.295894
https://doi.org/10.1145/2568225.2568247
https://doi.org/10.1109/TSE.2019.2901468
https://doi.org/10.1145/1858996.1859006
https://doi.org/10.1145/3368089.3417058
https://doi.org/10.1145/3368089.3417058
https://doi.org/10.1016/j.cl.2017.11.003
https://doi.org/10.1145/1323293.1294276
https://doi.org/10.1017/CBO9780511585852
https://doi.org/10.1109/ICPC.2019.00019

Journal of Management Practices, Humanities and Social Sciences 6(1) 88-105

Williams, C. C. (2005). Automatic mining of source code repositories to improve bug 􀅫inding techniques. IEEE Transactions on Software

Engineering, 31(6), 466-480. https://doi.org/10.1109/TSE.2005.63

Wong, E. Y. (2013). Autocomment: Mining question and answer sites for automatic comment generation. In 28th IEEE/ACM International

Conference on Automated Software Engineering (ASE), Silicon Valley, CA. https://doi.org/10.1109/ASE.2013.6693113

Xu, S. Y. (2019). Commitmessage generation for source code changes. In International Joint Conferences on Arti􀅲icial Intelligence, Freiburg,

Germany. https://doi.org/10.24963/ijcai.2019/552

Yang, B. L. (2019). A survey on research of code comment. In Proceedings of the 3rd International Conference onManagement Engineering,

Software Engineering and Service Sciences, New York, NY. https://doi.org/10.1145/3312662.3312710

Yihong, L. (2018). An Image Feature Extraction and Semantic Annotation Method Based on Visual Memory[J]. Computer Knowledge and

Technology, 2018(15).

Ying, A. T. (2005). Source code that talks: An exploration of Eclipse task comments and their implication to repository mining. ACM

SIGSOFT Software Engineering Notes, 30(4), 1-5. https://doi.org/10.1145/1082983.1083152

YuHai, L. B. X. (2016). Source code annotationquality assessmentmethodbasedon combined classi􀅫ication algorithm. Journal of Computer

Applications, 36(12), 3448-3453.

105

https://doi.org/10.1109/TSE.2005.63
https://doi.org/10.1109/ASE.2013.6693113
https://doi.org/10.24963/ijcai.2019/552
https://doi.org/10.1145/3312662.3312710
https://doi.org/10.1145/1082983.1083152

